A nonstandard Volterra difference equation for the SIS epidemiological model
نویسندگان
چکیده
منابع مشابه
A Nonstandard Finite Difference Scheme for SIS Epidemic Model with Delay: Stability and Bifurcation Analysis
A numerical scheme for a SIS epidemic model with a delay is constructed by applying a nonstandard finite difference (NSFD) method. The dynamics of the obtained discrete system is investigated. First we show that the discrete system has equilibria which are exactly the same as those of continuous model. By studying the distribution of the roots of the characteristics equations related to the lin...
متن کاملNonstandard finite difference schemes for differential equations
In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...
متن کاملDynamically consistent nonstandard finite difference schemes for epidemiological models
This work is the numerical analysis and computational companion of the paper by Kamgang and Sallet (Math. Biosc. 213 (2008), pp. 1–12) where threshold conditions for epidemiological models and the global stability of the disease-free equilibrium (DFE) are studied. We establish a discrete counterpart of the main continuous result that guarantees the global asymptotic stability (GAS) of the DFE f...
متن کاملDifference - Difference Lotka - Volterra Equation and Ultra - Discrete Limit
In this article, we have studied the difference-difference Lotka-Volterra equations in p-adic number space and its p-adic valuation version. We pointed out that the structure of the space given by taking the ultra-discrete limit is the same as that of the p-adic valuation space.
متن کاملThe Numerical Solution of Klein-Gorden Equation by Using Nonstandard Finite Difference
In this paper we propose a numerical scheme to solve the one dimensional nonlinear Klein-Gorden equation. We describe the mathematical formulation procedure in details. The scheme is three level explicit and based on nonstandard finite difference. It has nonlinear denominator function of the step sizes. Stability analysis of the method has been given and we prove that the proposed meth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
سال: 2014
ISSN: 1578-7303,1579-1505
DOI: 10.1007/s13398-014-0203-5